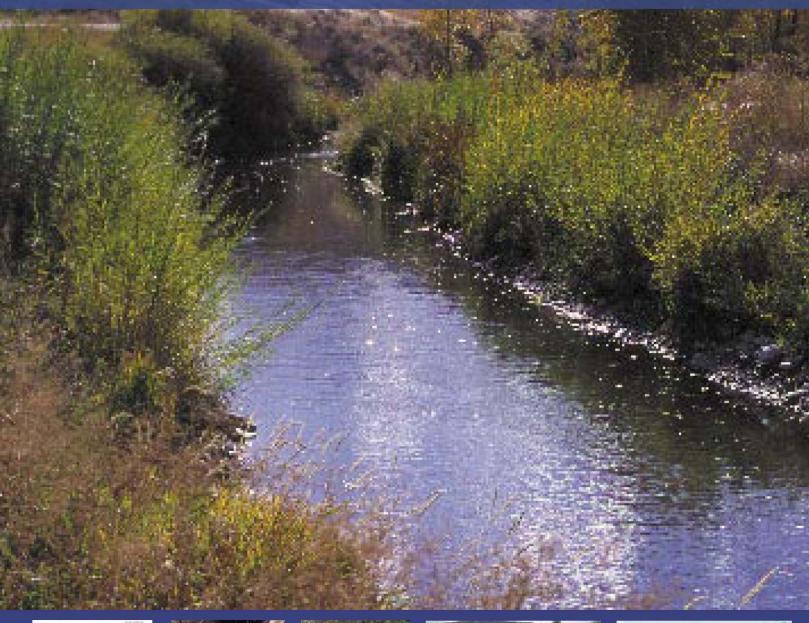
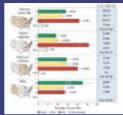
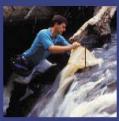


This PDF file is an excerpt from the EPA report entitled *Wadeable Streams Assessment: A Collaborative Survey of the Nation's Streams EPA 841-B-06-002 (April 2006).* The entire document can be downloaded from http://www.epa.gov/owow/streamsurvey/report.pdf.

Wadeable Streams Assessment: A Collaborative Survey of the Nation's Streams EPA 841-B-06-002


Cover Page,
Acknowledgements
and
Table of Contents




Wadeable Streams Assessment

A Collaborative Survey of the Nation's Streams

Draft Wadeable Streams Assessment

A Collaborative Survey of the Nation's Streams

United States Environmental Protection Agency Office of Water Washington, DC 20460

EPA 841-B-06-002

May 2006

Acknowledgments

This report resulted from a ground-breaking collaboration on stream monitoring. States came together with the U.S. Environmental Protection Agency (EPA) to demonstrate a cost-effective approach for answering one of the Nation's most basic water quality questions: what is the condition of our Nation's streams?

The EPA Office of Water would like to thank the many participants who contributed to this important effort and the scientists within the EPA Office of Research and Development for their research and refinement of the survey design, field protocols, and indicator development. Through the collaborative efforts of state environmental and natural resource agencies, federal agencies, universities, and other organizations, more than 150 field biologists were trained to collect environmental samples using a standardized method, and, more than 25 taxonomists identified as many as 500 organisms in each sample. Each participating organization attended a national meeting to discuss and formulate the data analysis approach, as well as regional meetings to evaluate and refine the results presented in this report.

Collaborators

Alaska Department of Environmental Conservation

Arkansas Department of Environmental Quality

Arizona Game and Fish Department

California Department of Fish & Game

California Water Board

Colorado Department of Public Health & Environment

Colorado Division of Wildlife

Connecticut Department of Environmental Protection

Delaware Department of Natural Resources & Environmental Control

Georgia Department of Natural Resources

Iowa Department of Natural Resources

Idaho Department of Environmental Quality

Illinois Environmental Protection Agency

Idaho Environmental Management

Kansas Department of Health and Environment

Kentucky Division of Water

Louisiana Department of Environmental Quality

Maryland Department of Natural Resources

Maine Department of Environmental Protection

Michigan Department of Environmental Quality

Minnesota Pollution Control Agency

Missouri Department of Conservation

Mississippi Department of Environmental Quality

Montana Department of Environmental Quality

North Carolina Department of Water Quality

Nevada Division of Environmental Protection

New Hampshire Department of Environmental Services

New Jersey Department of Environmental Protection

New Mexico Environment Department

North Dakota Department of Health

New York Department of Environmental Conservation

Oklahoma Conservation Commission

Oklahoma Water Resources Board

Ohio Environmental Protection Agency

Oregon Department of Environmental Quality

Pennsylvania Department of Environmental Protection

r rotection

South Carolina Department of Health & Environmental Control

South Dakota Department of Environment & Natural Resources

South Dakota Game, Fish & Parks

Tennessee Department of Environment & Conservation

Texas Commission of Environmental Quality

Utah Division of Water Quality

Virginia Department of Environmental Quality

Vermont Department of Environmental Conservation

Washington State Department of Ecology Wisconsin Department of Natural Resources West Virginia Department of Environmental Protection

Wyoming Department Environmental Quality Fort Peck Assiniboine and Sioux Tribes Guam EPA

U.S. Geological Survey

U.S. EPA, Office of Environmental Information

U.S. EPA, Office of Water

U.S. EPA, Office of Research and Development

U.S. EPA, Regions 1 - 10

Center for Applied Bioassessment and Biocriteria

Central Plains Center for Bioassessment

New England Interstate Water Pollution Control Commission

The Council of State Governments Great Lakes Environmental Center

Tetra Tech, Inc.

EcoAnalysts

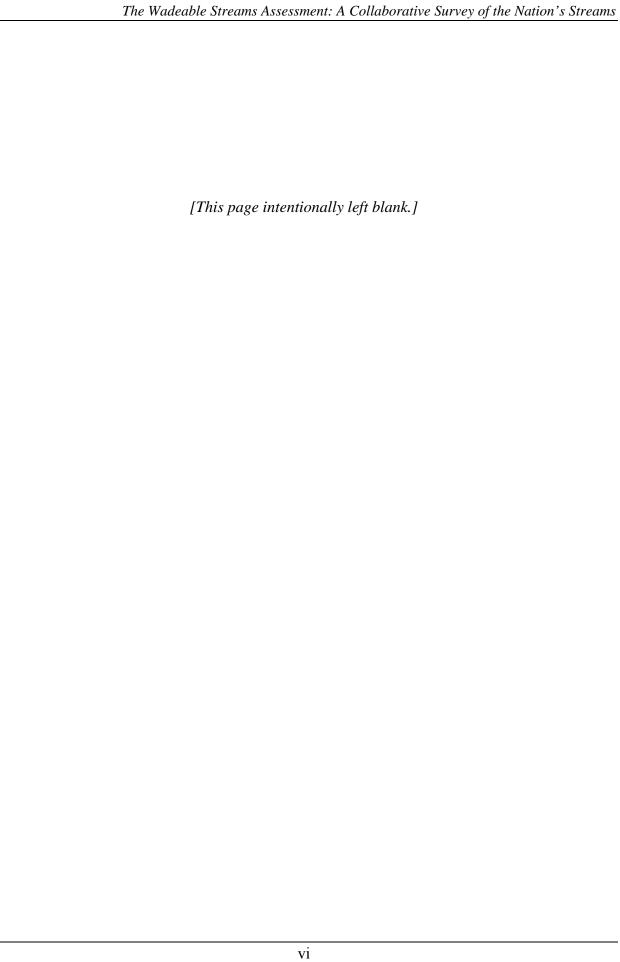
University of Arkansas Mississippi State University

Oregon State University

Utah State University

The data analysis team painstakingly reviewed the data set to ensure its quality and performed the data analysis. This team included Phil Kaufmann, Phil Larsen, Tony Olsen, Steve Paulsen, Dave Peck, John Stoddard, John Van Sickle, and Lester Yuan from the EPA Office of Research and Development; Alan Herlihy from Oregon State University; Chuck Hawkins from Utah State University; Daren Carlisle from the U.S. Geological Survey; and Michael Barbour, Jeroen Gerritson, Kristen Pavlik, and Sam Stribling from Tetra Tech, Inc.

The report was written by Steve Paulsen and John Stoddard from the EPA Office of Research and Development and Susan Holdsworth, Alice Mayio, and Ellen Tarquinio from the EPA Office of Water. Major contributions to the report were made by John van Sickel, Dave Peck, Phil Kaufmann, and Tony Olsen from the EPA Office of Research and Development and Peter Grevatt and Evan Hornig from EPA Office of Water, Alan Herlihy from Oregon State University, Chuck Hawkins from Utah State University, and Bill Arnold from the Great Lakes Environment Center. Technical editing and document production support was provided by RTI International. This report was significantly improved by the external peer review conducted by Dr. Stanley V. Gregory, Ecologist, Oregon State University; Dr. Kenneth Reckhow, Environmental Engineer, Duke University; Dr. Kent Thornton, Principal Ecologist, FTN Associates; Dr. Scott Urquhart, Statistician, Colorado State University; and Terry M. Short of the U.S. Geological Survey. The Quality Assurance Officer for this project was Otto Gutenson from the EPA Office of Water.


Table of Contents

Chapter	Page
Acknowledgments	ii
Collaborators	
Executive Summary	1
Introduction	5
Chapter 1 – Design of the Wadeable Streams Assessment	7
Why focus on wadeable streams?	
What area does the WSA cover?	
What regions are used to report WSA results?	
How were sampling sites chosen?	
How were waters assessed?	
Setting Expectations	23
Chapter 2 – Condition of the Nation's Streams	25
Background	
Indicators of Biological Condition	
Macroinvertebrate Index of Biotic Condition	
Macroinvertebrate Observed/Expected (O/E) Ratio of Taxa Loss	
Aquatic Indicators of Stress	
Chemical Stressors	31
Physical Habitat Stressors	37
Biological Stressors	44
Ranking of Stressors	44
Relative Extent	44
Relative Risk of Stressors to Biological Condition	
Combining Extent and Relative Risk	48
Chapter 3 – Wadeable Streams Assessment Ecoregion Results	49
Northern Appalachians Ecoregion	50
Physical Setting	50
Biological Setting	
Human Influence	
Summary of WSA Findings	
Southern Appalachians Ecoregion	
Physical Setting	
Biological Setting	
Human Influence	
Summary of WSA Findings	
Coastal Plains Ecoregion	
Physical Setting	
Biological Setting	
Human Influence	
Summary of WSA Findings	
Upper Midwest Ecoregion	59

Physical Setting	59
Biological Setting	60
Human Influence	60
Summary of WSA Findings	60
Temperate Plains Ecoregion	62
Physical Setting	
Biological Setting	63
Human Influence	63
Summary of WSA Findings	63
Southern Plains Ecoregion	65
Physical Setting.	65
Biological Setting	
Human Influence	66
Summary of WSA Findings	66
Northern Plains Ecoregion	
Physical Setting	
Biological Setting	68
Human Influence	
Summary of WSA Findings	68
Western Mountains Ecoregion	
Physical Setting	
Biological Setting	
Human Influence	
Summary of WSA Findings	71
Xeric Ecoregion	
Physical Setting	
Biological Setting	74
Human Influence	74
Summary of WSA Findings	75
Chapter 4 – Conclusion and Next Steps	
Chapter 5 – Sources and References	70
General References	
EMAP Stream and River Sampling Methods	
Probability Designs	
Ecological Regions	
Indices of Biotic Integrity	
Observed/Expected Models	
Physical Habitat	
Reference Condition	
Other EMAP Assessments	
Biological Condition Gradient/Quality of Reference Sites	
Relative Risk	
Nutrients	
Appendix A – 2006 Wadeable Streams Assessment: Data Analysis Approach	
Tr	

List of Figures

Figure	e	Page
ES-1.	Condition of wadeable streams.	2
ES-2.	Relative extent and relative risk for anthropogenic stressors impacting the nation's	
	waters.	3
1-1.	Strahler stream order diagram.	8
1-2.	Stream characteristics change as the stream's size or stream order increases	9
1-3.	Major rivers and streams of the United States.	
1-4.	Average annual precipitation of the United States.	11
1-5.	The geographic region for WSA and the major landforms and vegetation patterns	12
1-6.	Human population density (people per square mile) from the 2000 census	13
1-7.	Climatic and landform reporting regions for the Wadeable Streams Assessment	14
1-8.	Ecological reporting regions for the Wadeable Streams Assessment	15
1-9.	Length of wadeable, perennial streams by ecoregion.	16
1-10.	Sites sampled for the Wadeable Streams Assessment by EPA Region.	17
1-11.	Reach layout for sampling.	20
1-12.	Stream macroinvertebrates	21
2-1.	Biological condition of streams based on Macroinvertebrate Index of Biotic	
	Condition	28
2-2.	Macroinvertebrate taxa loss as measured by the Observed/Expected (O/E) Ratio	30
2-3.	Total phosphorus concentrations in U.S. streams.	33
2-4.	Total nitrogen concentrations in U.S. streams.	34
2-5.	Salinity conditions in U.S. streams.	35
2-6.	Acidification in U.S. streams.	37
2-7.	Streambed sediments in U.S. streams.	39
2-8.	In-stream fish habitat in U.S. streams.	40
2-10.	Riparian disturbance in U.S. streams.	43
2-11.	Relative extent of stressors (i.e., proportion of stream length ranked in poor	
	category for each stressor).	45
2-12.	Relative extent of stressors and relative risk for Macroinvertebrate Index of Biotic	
	Condition and macroinvertebrate taxa loss.	47
3-1.	Ecological reporting regions for the Wadeable Streams Assessment	50
3-2.	WSA survey results for the Northern Appalachians ecoregion	53
3-3.	WSA survey results for the Southern Appalachians ecoregion.	56
3-4.	WSA survey results for the Coastal Plains ecoregion.	59
3-5.	WSA survey results for the Upper Midwest ecoregion.	62
3-6.	WSA survey results for the Temperate Plains ecoregion.	65
3-7.	WSA survey results for the Southern Plains ecoregion.	67
3-8.	WSA survey results for the Northern Plains ecoregion.	70
3-9.	WSA survey results for the Western Mountains ecoregion	73
3-10.	WSA survey results for the Xeric ecoregion.	76

